F SERIES # 10.0x10.4 4-direction & center-push Tact Switch #### Features - The operation function of the control unit enables center push operation. Digital still cameras and digital video camcorders - Compound operation using a sing knob is realized. - Compact size and low-profile forms are available for refold soldering. Available for tape and reel packaging. #### **Applications** - Portable audio devices - Mobile phones and personal digital assistant - Operation of various digital devices ### Specification | Items Operating temperature range | | Standard | | |-----------------------------------|--------------------|------------------------|--------------------------| | | | | | | Insulation resistance | 100MWmin. 100V DC | | | | Dielectric strength | 250V AC for 1 min. | | | | Contact resistance | 100mWmax. | | | | Durability | Lifetime | 50,000 Cycles | | | Mechanical performance | Operating force | 4-direction 160 ± 80gf | Center push 300 ± 150gf | | | Travel | 4-direction 4° ±2° | Center push 0.20 ± 0.1mm | # Diagram | No. | Dimension | Circuit Diagram
Pad Layout | | |--------|--|--|---| | • TMHM | 114 128 10 95 7 2.5 2.608 1.1 2.6008 1.1 2. | 95.8
94.5
2.5
2.5
7.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3 | 13
3
4
13
4
13
4
13
4
2
4
2
4
2
4 |