

Bi-Direction Relay Driver

CYP8023D

General Description

CYP8023D is a bi-direction relay driver circuit, used to control the DC motor and the magnetic latching relay, with large output capability, ultra-low power consumption. It can be widely used in smart meters and other pulses, level control applications.

Features

• Max input voltage: 40V. Limit operating voltage: 30V. Recommended safe working voltage: $5\sim24V$ (The recommended safe operating voltage range is for commercially available $9\sim12$ relays (Internal resistance is about 50 Ω), other specifications of relays should be determined according to the measured conditions.)

• Limit operating current: 800mA

• The input high low conversion level is about 1.5V, which is compatible with various microcontrollers

• Integrated high speed continuation diode with built-in reverse voltage function to cancel TVS tubes in general applications

• Typical operating power: 5W (It is equivalent to 400mA output current at 12V working voltage. When the working voltage increases, the corresponding output current should decrease.)

• Limit power: 10W (it is equivalent to 800mA output current at 12V working voltage. When the working voltage increases, the corresponding output current should decrease. Working beyond the limit can cause chip damage.)

Applications

- Smart Meter
- Motor drive
- Magnetic latching relay control

Order specification

Part No	Package	Manner of Packing	Devices per bag/reel
CYP8023D	SOP23-6	Reel	3000
CYP8023D	SOP8	Reel	4000

Print rules

Package	Marking
SOT23-6	8023S
SOP8	8023S

Block Diagram and Pin Arrangement Diagram

Pin Assignment

Pin No.		Din Nomo	Decerit	
SOT23-6	SOP8	Pin Name	Description	
5	8	VDD	Supply input voltage	
2	4	GND	Ground.	
3	3	INA	Input A	
4	1	OUTA	Output A	
6	7	INB	Input B	
1	5	OUTB	Output B	

Functional Description

CYP8023D is a bi-direction relay driver circuit, used to control the DC motor and the magnetic latching relay. INA and INB are triggered by pulse, so long as the input terminal is directly connected with the output terminal of the corresponding device, it can work; The trigger pulse is triggered according to the function list state and the relay acts accordingly.

Inj	put	Output		
INA	INB	OUTA	OUTB	
0	0	High-impedance	High-impedance	
0	1	0	1	
1	0	1	0	
1	1	High-impedance	High-impedance	

LOGIC FUNCTION TABLE

Absolute Maximum Ratings

T_{amb}=25 °C, unless specified otherwise.

Parameter	Symbol	Value	Unit
Max Input Voltage	V_{DD} - V_{GND}	+40	V
OUTA/OUTB Voltage	$V_{\text{OUTA}}/V_{\text{OUTB}}$	+40	V
Other Input / Output Voltage	V_{IN}/V_{OUT}	VGND-0.4~VDD+0.4	V
Max Junction Temperature	T_j	150	°C
Operating Temperature	To	-40~85	°C
Storage Temperature	T_{stg}	-65~150	°C
Thermal Resistance (Junction to Ambient)	\mathbf{R}_{ja}	120	°C/W
ESD (Human-Body Model)	HBM	8000	V
ESD (Machine Model)	MM	200	V

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Recommended operating conditions

Parameter	Symbol	Value	Unit
Input voltage range	V_{IN}	+36(MAX.)	V
Operating temperature range	T_j	-40~85	°C

Electrical Characteristics (1) (2)

T _{emb} =25 ℃ unle	ss specified	otherwise
$I_{amb} - 25$ C, unic	ss specificu	ounci wise.

Parameter	Parameter Symbol Test Conditions		Min.	Тур.	Max.	Unit	
Static Shutdown Characteristics							
Output Breakdown Current	BV_{DSS}	$V_{INA} = V_{INB} = 0V, I_D = 250 uA$	40			V	
Output Leakage Current	I _{DSS}	$V_{INA}=V_{INB}=0V, V_D=24V$			10	μA	
Static Opening Characteristi	Static Opening Characteristics						
Input Threshold Voltage	V_{TH}			1.5	2	V	
		V_{DD} =12V, R_L =80 Ω		7	10	Ω	
Output On registence	D	V_{DD} =30V, R_L =80 Ω		6	10	Ω	
Output On-resistance	K _{DS(ON)}	$V_{DD}=12V, R_L=40\Omega$		7	10	Ω	
		V_{DD} =30V, R_L =40 Ω		6	10	Ω	
Input Characteristics							
Equivalent Input Resistor	$R_{\rm IN}$	$V_{DD}=12V$, $V_{INA}=V_{INB}=0V$		120		kΩ	
Input Current	I _{IN}	$V_{INA}=3V$ or $V_{INB}=3V$		250	400	μΑ	
liiput Current		V_{INA} =5V or V_{INB} =5V		450	600	μΑ	
FWD Characteristics							
Forward Conduction Voltage	V_{SD}	$I_{S}=1A$		1.5	2	V	
Reverse Recovery Time	T_{RR}	V_{DD} =12V, R_L =80 Ω		190		ns	
Transmission Characteristics							
Rise Time	T_R	V_{DD} =12V, R_L =80 Ω		50		ns	
Turn ON Delay Time	T _{D(ON)}	$V_{DD}=12V, R_L=80\Omega$		60		ns	
Fall Time	$T_{\rm F}$	$V_{DD}=12V, R_{L}=80\Omega$		50		ns	
Turn OFF Delay Time	T _{D(OFF)}	$V_{DD}=12V, R_{L}=80\Omega$		2		ns	

Application Circuits

Typical Application Diagram

The input terminals A and B are triggered by pulse. The input terminal of the chip is connected with the output terminal of the corresponding device to work. The trigger pulse is triggered according to the function list state and the relay acts accordingly. In smart meter applications, the recommended pulse width=100ms. The length of the intervals should be longer than 100ms. These intervals include: intervals between forward drive pulse and next backward drive pulse, intervals between forward drive pulse, intervals between backward drive pulse and next forward drive pulse, intervals between backward drive pulse and next forward drive pulse, intervals between backward drive pulse.

Schematic diagram of pulse excitation

Recommended circuit

Package Information (SOT23-6)

Package Information (SOP8)

Top View

Side View

End View

SYMBOL	MIN	NOM	MAX	NOTE
Α	1.35	-	1.75	
A1	0.10	-	0.25	
b	0.31	-	0.51	
С	0.17	-	0.25	
D	4.80	-	5.00	
E1	3.81		3.99	
E	5.79	-	6.20	
e		1.27 BSC		
L	0.40	-	1.27	
ø	0*	-	8"	

Special Instructions

The company reserves the right of final interpretation of this specification.

Version Change Description

Version: V1.4	Author: Yang	Time: 2021.8.18			
Modify the record:					
1. Re-typesetting the manual and c	hecking some data				
Version: V1.5 Modify	Author: Yang	Time: 2021.11.26			
the record:					
1. Add print rules					
Version: V1.6 Modify	Author: Yang	Time: 2021.12.22			
the record:					
1. Add the recommended circuit					
Version: V1.7 Modify	Author: Yang	Time: 2022.5.23			
the record:					
1. Update order specification					
Version: V1.8	Author: Yang	Time: 2022.8.16			
Modify the record:					
1. Add recommended operating conditions					

Statement

The information in the usage specification is correct at the time of publication. CY Wireless Technology Limited has the right to change and interpret the specification, and reserves the right to modify the product without prior notice. Users can obtain the latest version information from our official website or other effective channels before confirmation, and verify whether the relevant information is complete and up to date.

With any semiconductor product, there is a certain possibility of failure or failure under certain conditions. The buyer is responsible for complying with safety standards and taking safety measures when using the product for system design and complete machine manufacturing. The product is not authorized to be used as a critical component in life-saving or life-sustaining products or systems, in order to avoid potential failure risks that may cause personal injury or property loss.