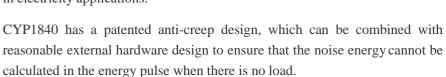


CY Wireless Technology Limited

Built-in Clock, Calibration Free, Single PhaseEnergy Meter IC with Integrated Oscillator

CYP1840 Datasheet

Date: 2021/09/08Version: 1.03



General Description

CYP1840 is a built-in clock and calibration-free energy metering IC, suitable for single-phase multifunctional electricity meter, smart socket, smart home appliances, electric bicycle charging pile and other applications with better cost performance.

CYP1840 integrates 2 high-precision sigma-delta ADC to measure current and voltage simultaneously. Reference voltage, power management and other analog circuit modules, and processing active power, current and voltage RMS electrical parameters digital signal processing circuit.

CYP1840 can measure electric parameters such as current and voltage RMS, active power, active energy, fast current RMS (for leakage detection/over-current protection), and temperature detection, waveform output and so on. CYP1840 output data through the UART/SPI interface. It is available for the smart socket, smart appliances, single-phase multi-function power meter, electric bicycle charging pile and information requirement of data acquisition in electricity applications.

Features

- 2 high-precision sigma-delta ADC for current and voltage measuring
- The range of current (10mA~35A) @1mohm
- The range of Active energy (1w~7700w) @1mohm@220V
- Measure RMS Voltage and Current, fast current RMS, Active Power, Active Energy
- The gain error is less than 1%, calibration-free when peripheral components meet certain conditions.
- The current channel support electric leakage/over-current monitoring function, the threshold and response time can be configured
- Voltage zero-Crossing logic output
- Built-in waveform register for load type analysis, Waveform data can be output for load type analysis
- Built-in temperature sensor, Meet the requirements of the product itself, such as over-temperature monitoring, high current node preset temperature alarm, room temperature measurement
- SPI (≤900KHz) /UART (4800bps)
- On-chip power supply monitoring, IC reset when VDD is lower than 2.7V(typical).
- On-chip voltage reference of 1.218V
- On-chip 4MHz oscillator circuit
- Power supply 3.3V, low power consumption 10mW (typical)
- Package: TSSOP14

Order specification

Part No	Package	Manner of Packing	Devices per bag/reel
CYP1840	TSSOP14	Reel	3000PCS

Block Diagram

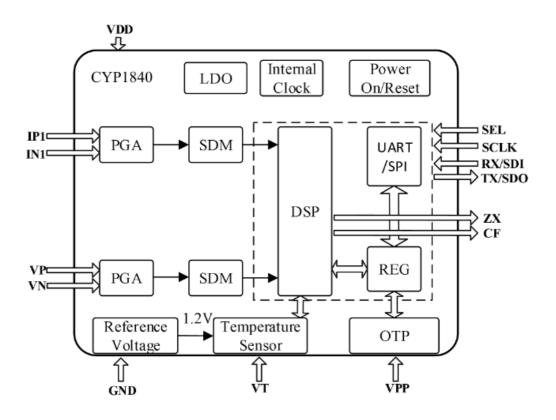


Figure 1 Internal block diagram

Pin Assignment

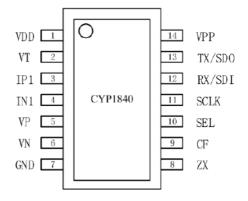


Figure 2 TSSOP14

Pin No.	Pin Name	Description
1	VDD	Power Supply (+3.3V).
2	VT	External temperature sensor(NTC) signal input.
3,4	IP1,IN1	Analog input of current channel, maximum differential voltage has a maximum input range of ±50mV(35mV RMS).
5,6	VP,VN	Analog input for voltage channel, this differential input has a maximum input range of ±100mV(70mV RMS).
7	GND	GND
8	ZX	Voltage channel zero-crossing output pin
9	CF	Energy pulse output, multiplex function refer to MODE register description
10	SEL	Interface select pin (0: UART 1: SPI), pull-down resistance inside, disconnect is low-level (UART), connected to VDD is high-level (SPI)
11	SCLK	SPI clock input. If using UART interface, this pin doesn't need be connected.
12	RX/SDI	Data input for SPI interface/Receive line for UART interface
13	TX/SDO	Data output for SPI interface/Transmit line for UART interface, this pin require external pull-up resistor.
14	VPP	Reserved, not connected.

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Power Voltage VDD	VDD	- 0.3∼+4	V
Analog Input Voltage to GND	IP1,VP	-4~+4	V
Digital Input Voltage to GND	UART_SEL,RX/SDI	-0.3~VDD+0.3	V
Digital Output Voltage to GND	CF,TX/SDO	-0.3~VDD+0.3	V
Operating Temperature Range	T	<i>-</i> 40∼+85	°C
Storage Temperature Range	Tstg	-40~+85	°C

Note: Unless specified otherwise, Tamb= 25°C

Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Power Supply	VDD		3.0		3.6	V
Power Dissipation	Iop	VDD=3.3V		3		mA
Magazzina nanga		4000:1 Input dynamic				
Measuring range		range				
Active energy measurement	35A~100mA Input@			0.2		%
accuracy (large signal)		1mohm sampling resistor		0.2		70
Active energy measurement		100mA~50mA Input@		0.4		0/
accuracy (small signal)		1mohm sampling resistor		0.4		%
Active energy measurement		50mA~10mA Input@		0.6		%
accuracy (tiny signal)		1mohm sampling resistor		0.6		%
RMS measurement		35A~100mA Input@		0.2		%
accuracy(large signal)		1mohm sampling resistor		0.2		%0

CYP1840

RMS measurement		100mA~50mA Input@		2		%
accuracy(small signal)		1mohm sampling resistor		2		%0
RMS measurement		50mA~10mA Input@		6		0/
accuracy(tiny signal)		1mohm sampling resistor		6		%
Fast RMS response time	50Hz	Can be set to cycle/half	10		40	mS
Tast Kivis response time	60Hz	cycle	8.3		33	mS
Zero-crossing signal output				571		uS
delay				371		us
Measurement error caused by		Phase advance 37 °				
phase angle between channels	PF08err	(PF=0.8)			0.5	%
(capacitance)		(11-0.6)				
Measurement error caused by		Phase delay 60 °				
phase angle between channels	PF05err	(PF=0.5)			0.5	%
(sensibility)		(FF=0.3)				
AC power suppression (output						
frequency amplitude	ACPSRR	IP/N=100mV			0.1	%
variation)						
DC power suppression (output						
frequency amplitude	DCPSRR	VP/N=100mV			0.1	%
variation)						
Analog input level (current)		Differential current input			50	mV
Tillalog input level (current)		(peak)			50	111 V
Analog input level (voltage)		Differential voltage input			200	mV
Titalog input level (voltage)		(peak)			200	111 V
Analog input impedance				370		kΩ
SEL pull-down resistor		SEL (pull-down)		56.9		kΩ
Analog input bandwidth		(-3dB)		3.5		kHz
Internal voltage reference	Vref			1.218		V
Logic input high-level		VDD=3.3V ±5%	2.6			V
Logic input low-level		VDD=3.3V±5%			0.8	V
Logic output high-level		VDD=3.3V±5%	VDD		· · · · · · · · · · · · · · · · · · ·	V
Logic output mgn-level		IOH=5mA	-0.5			V
Logio output lava laval		VDD=3.3V±5%			0.5	V
Logic output low-level		IOL=5mA	<u> </u>		0.5	V

Note: Unless specified otherwise, Tamb = 25°C

All voltage values take GND terminal potential as reference point.

Test conditions VDD=3.3V, Built-in crystal oscillator, electric energy is measured by CF output.

Internal Register Description

Register list

Address	Symbol	External	Internal	Bits	Default	Description
	·	R/W	R/W			_
	T	Е	lectrical para	ameter r	egister (read o	nly)
0x00	IA_FAST_R MS	R	W	24	0x000000	Fast current RMS, unsigned
0x01	IA_WAVE	R	W	20	0x00000	Current waveform register, signed
0x03	V_WAVE	R	W	20	0x00000	Voltage waveform register, signed
0x04	IA_RMS	R	W	24	0x000000	Current RMS register, unsigned
0x06	V_RMS	R	W	24	0x000000	Voltage RMS register, unsigned
0x08	A_WATT	R	W	24	0x000000	Active power register, signed
0x0A	CFA_CNT	R	W	24	0x000000	Active energy pulse count, unsigned
0x0C	A_CORNER	R	W	16	0x0000	Current voltage waveform phase angle register
0x0E	TPS1	R	W	10	0x000	Internal temperature register, unsigned
0x0F	TPS2	R	W	10	0x000	External temperature register, unsigned
		Ţ	Jser operate	d registe	er (read and wi	rite)
0x10	IA_FAST_R MS_CTRL	R/W	R	16	0xFFFF	Fast current RMS control register
0x11	IA_CHOS	R/W	R	8	0x00	Current DC offset correction
0x13	IA_RMSOS	R/W	R	8	0x00	Current RMS offset adjust register
0x15	A_WATTOS	R/W	R	8	0x00	Active power offset adjust register
0x17	WA_CREEP	R/W	R	8	0x0B	Active power no-load threshold register
0x18	MODE	R/W	R	16	0x0000	User mode selection register
010	SOFT_RES	D/W	D	24	0000000	When 0x5A5A5A is written, the user
0x19	ET	R/W	R	24	0x000000	area register is reset to default
						Write protection register. After writing
O 1 A	R_WRPR OT	D/W	D	0	000	0x55, the user operation register can be
0x1A		R/W	R	8	0x00	written. Write other values, user
						operated register area is not writable
0x1B	TPS_CTRL	R/W	R	16	0x07FF	Temperature mode control register
010	TDC2 A	D /W/	D	O	0× 0 000	External temperature sensor gain
0x1C	TPS2_A	R/W	R	8	0x0000	coefficient adjust register
0x1D	TPS2_B	R/W	R	8	0x0000	External temperature sensor offset coefficient adjust register
	i					J

Special Register Description

User mode selection register (Note: X indicates either 0 or 1)

0x18	MODE	User mode selection register					
No.	name	default value	description				
[1:0]	IA_F_SEL	0b00	Current waveform selection	0X: High pass, AC			
			through filter	measurement			
				10: Low pass, DC			
				measurement			
				11: Full wave, AC/DC			
				measurement			
2~3	reserved	0b00	reserved				
				0X: High pass, AC			
				measurement			
[5:4]	V_F_SEL	0b00	Voltage waveform selection	10: Low pass, DC			
		through filter		measurement			
				11: Full wave, AC/DC			
				measurement			
			Fast effective value selection	0: High pass filter front output			
6	L_F_SEL	0b0	through filter	1: High pass filter behind			
			unough men	output			
7	reserved	0b00	reserved				
8	RMS_UPDATE	0b0	RMS register update rate	0: 400ms			
0	_SEL	000	Kivio register apaate rate	1: 800ms			
9	AC_FREQ_SEL	0b0	AC frequency select	0: 50Hz			
	TIC_TREQ_BEE	000	The frequency select	1: 60Hz			
10	Reserved	0b0	reserved				
11	Reserved	0b0	reserved				
				0: reserved			
12	CF_UNABLE	0b0	CF output function selection	1: Over-current alarm function			
			1	enable by TPS_CTRL[14]			
				configured			
13~15	Reserved	3b000	reserved				

Temperature mode control register

0x1B	TPS_CTRL		Temperature mode control register						
No.	name	default value	description						
			[15] Temperature switch,	0: on					
			default 0b0,Open the	1: off					
			temperature	1: 011					
			measurement						
				0: Temperature alarm on					
			[14] Alarm switch, default	1: Over-current and leakage alarm					
			0b0,	on					

0x1B	TPS_CTRL	0x07FF	[13:12]] Temperature	00: Automatic temperature measurement
			measurement selection,	01: the same as 00
			default0b00	10: Internal temperature
			Automatic	measurement
			temperature	11: External temperature
			measurement	measurement
			[11.10]]	00: 50ms
			[11:10]Temperature measurement interval	01: 100ms
			default0b01 100ms	10: 200ms
			defaultooof fooms	11: 400ms
			[9:0] External temperature	
			measurement alarm	Alarm when TPS2 register value
			thresholdsetting, default	isgreater than or equal to it.
			0x3FF,not	
			alarm	

Theory of Operation

CYP1840 is composed of analog signal processing module and digital signal processing module. The analog module includes two-channel PGA, two-channel sigma-delta ADC, internal clock, power on/reset monitor, temperature sensor and other related analog modules. The digital module is digital signal processing module (DSP).

Current and voltage transient waveform measurement

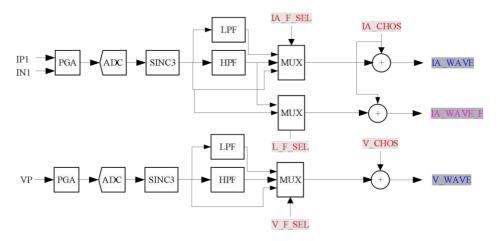


Figure 4

As shown in the figure above, the current and voltage pass through the analog module amplifier (PGA) and the high-precision analog-to-digital conversion (ADC) respectively to get two channels of 1bit PDM to the digital module. The digital module passes through the SINC3 filter (SINC3), optional high-pass filter (HPF) or low-pass filter (LPF) and channel offset correction modules. Obtain the required current waveform data and voltage waveform data (IA_WAVE, V_WAVE).

HPF and LPF are optional for the two channels. HPF is an AC measurement mode, LPF is a DC measurement mode, and full-wave measurement mode is a full-wave measurement mode if neither of them is passed. Set

through user MODE register MODE [5:0].

The current and voltage waveform data are updated at a rate of 7.8k. Each sampled data is 20bit signed value, which are saved in waveform registers (I_WAVE, V_WAVE). The waveform value can be read continuously when the SPI rate is greater than 375Kbps.

Addross	Crossb ol	External	Internal	Bits Default		Degarinties
Address	Symbol	R/W	R/W	DIUS	Derault	Description
0x01	IA_WAVE	R	W	20	0x00000	Current waveform register
0x03	V_WAVE	R	W	20	0x00000	Voltage waveform register

Channel offset correction

The CYP1840 contains an 8-bit calibration register (IA_CHOS) with a default value of 00H. They eliminate the deviation caused by the analog-to-digital conversion of the current channel and the voltage channel respectively by the data in the form of the complement of 2. The deviation here may be due to the offset generated by the input and the ANALOG-to-digital conversion circuit itself. The offset correction allows the waveform offset to be 0 without load.

Address	Symbol	External	Internal	Bits	Default	Description
Address	Symbol	R/W	R/W	DIIS		Description
0x11	IA_CHOS	R/W	R	8	0x00	Current channel DC offset correction

These registers are used for DC measurement mode, IA/V_LPF_SEL=1.

Correction formula:
$$CHOS = WAVE-WAVEO \frac{4}{42}$$

WAVE is the corrected waveform value, WAVE0 is the uncorrected waveform value;

Corresponding RMS value: RMS = RMS0 +
$$\frac{3125*CHOS}{4}$$

RMS is the corrected valid value, RMS0 is the uncorrected valid value.

Active Power

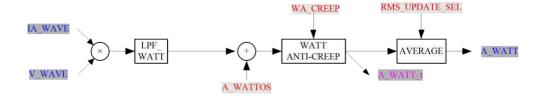


Figure 5

Address	Symbol	External	Internal	Bits	Default	Description	
Address	Symbol	R/W	R/W	Dits	Default	lt Description	
0x08	A_WATT	R	W	24 0x000000 Activ		Active power register	

Formula for calculating active power: A_WATT = $\frac{4046*\text{I A *V V} * (50)^{\circ}(\phi)}{\text{Vref}}$

between I(A) and V(V) (AC signal), Vref is the on-chip reference voltage, the typical value is 1.218V.

This register indicates whether the active power is positive or negative. Bit[23] is the symbol Bit. Bit [23]=0 means the current power is positive and Bit[23]=1 means the current power is negative, in complement form.

Active power offset correction

CYP1840 has one 8-bit active power offset adjust register (A_WATTOS), default value is 00H. It eliminate the offset of active power in the measurement of electric energy with the data in the form of complement of 2. Bit[7] is the symbol Bit. The offset may come from board level noise or crosstalk. Offset adjustment can make the values in the active power register close to 0 with no load.

Address	Symbol	External R/W	Internal R/W	Bits	Default	Description
0x15	A_WATTOS	R/W	R	8	0x00	Active power offset adjust register

$$WATTOS = \underbrace{WATT - WATTO}_{8 \times 3.05172}$$

WATT is the active power after adjustment, and WATT0 is the active power before adjustment.

Active power anti-creep

CYP1840 has the patented power anti-creep function, which ensures that the power of board level noise will not accumulate when there is no load.

This active power no-load threshold register(WA_CREEP) is 8bit unsigned data, default value is 0BH. The corresponding relationship between this value and the active power register value is shown in the following formula. When the absolute value of the input active power signal is less than this value, the output active power is set to 0. This can make the value of the active power register is 0 and the energy does not accumulate in the case of no load, even if there is a tiny noise signal.

Address	Symbol	External	Internal	Bits	Default	Description	
Audiess	Symbol	R/W	R/W	Dits Default		Description Description	
0x17	WA_CREEP	R/W	R	8	0x0B	Active power no-load threshold register	

Set WA_CREEP based on the value of the power register A_WATT, their corresponding relationship as below:

$$WA_CREEP = \frac{WATT}{3.0517578125*8}$$

When the channel is in the anti-creep state, the RMS current register of this channel is also set to 0.

Energy Measurement

CYP1840 provides energy pulse measurement. The active instantaneous power is integrated by time to get active energy and output calibration pulse CF in proportion. CFA_CNT register saves the count of output energy pulse.

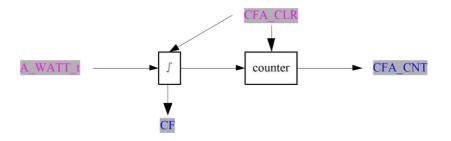


Figure 6

A d duoga	Crossb ol	External	Internal	D:4a	Dofoult	Degamination	
Address	Symbol	R/W	R/W	Bits	Default	Description	
0x0A	CFA_CNT	R	W	24	0x000000	Active energy pulse count, unsigned	

The count of active energy pulses corresponds to the consumption of electricity. The count of pulses can be counted directly from the CF pin through I/O interruption. When the period of CF is less than 180ms, the pulse is 50% duty cycle. When it is greater than or equal to 180ms, the fixed pulse width of high-level is 90ms.

Note: CFA_CNT is pulse algebraic sum accumulation. It means that pulse plus at positive energy and minus at negative energy.

The cumulative time of each CF pulse: $t_{CF} = \frac{1638.4*256}{1638.4*256}$

WATT is the corresponding active power register value (A_WATT)

Current and Voltage RMS

The RMS of these channels is shown in the figure below. After the square circuit (X^2) , the low-pass filter (LPF_RMS) and the ROOT circuit (ROOT), the instantaneous value RMS_t of RMS is calculated, and then the average value of the two channels (A_RMS, V_RMS) is calculated.

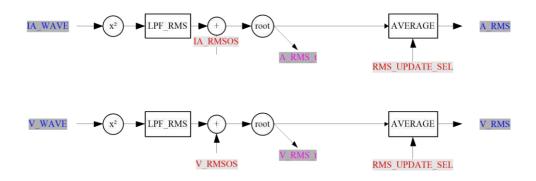


Figure 7

A ddmogg	Cymbol	External	Internal	Dita	Default	Description
Address	Symbol	R/W	R/W	Bits	Default	Description
0x04	IA_RMS	R	W	24	0x000000	Current RMS register, unsigned
0x06	V_RMS	R	W	24	0x000000	Voltage RMS register, unsigned

0x18	MODE	User mode selection register				
No.	name	default value description				
0	RMS UPDATE SEL	01-0	DMC no sistem um data nota	0: 400ms		
8	KWIS_UPDATE_SEL	0b0	RMS register update rate	1: 800ms		

Set MODE[8].RMS_UPDAT_SEL, the average refresh time of RMS can be selected as 400ms or 800ms, and the default value is 400ms. When a current channel is in anti-creep state, the RMS of the current channel is 0.

The current RMS conversion formula: IA_RMS = $\frac{324004*I(A)}{Vref}$

The voltage RMS conversion formula: $V_RMS = 79931*V(V)$ Vref

Vref is the reference voltage, the typical value is 1.218V.

I(A) is the input signal between IP1 and IN1 pins (mV), and V(V) is the input signal of VP pins (mV).

RMS offset calibration of current and voltage

CYP1840 has one 8-bit RMS offset register (IA_RMSOS), whose default value is 00H. It is used to calibrate the deviation in RMS with the complement form of 2. Bit[7] is the sign Bit, This deviation may come from the input noise. Because there is a square operation in calculating the RMS, this may introduce DC offset caused by noise. The deviation calibration can make the value in the RMS register close to 0 without load.

	Addres	Symbol	Extern al	Intern al	Bits	Defau	Description
	S		R/W	R/W		It	
Ī	0x13	IA_RMSO	R/W	R	8	0x00	Current RMS offset adjust register
		S					

Calibration formula: RMSOS = $\frac{RMS^2 - RMSO^2}{9.3132 \times 2^{-15}}$

RMS0 is the RMS current value before correcting and RMS is the RMS current value after correcting \circ

Leakage/Over-current Detection

CYP1840 has a fast RMS register, which can detect half cycle or cycle RMS. This function can be usedfor leakage or over-current detection. The source of waveform L_WAVE is shown below.

HPF can be passed or not passed , HPF is not passed by default , can get the absolute value of IA_WAVE_F accumulate by half-cycle or one cycle time, which is selected by FAST_RMS_CTRL[15]. Cycle accumulation is selected by default, The maximum response time is 40ms (50Hz) or 33mS (60Hz), Note that the runout of IA_FAST_RMS register is relatively large when half cycle wave accumulation ccurs. Distinguish between 50Hz and 60Hz half-cycle time (AC_FREQ_SEL).

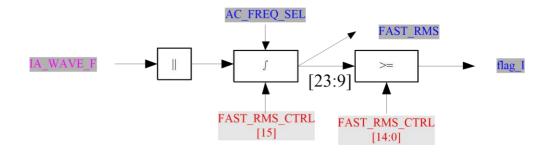


Figure 8

A d dwaga	C-mah al	External	Internal	D:4a	Default	Description	
Address	Symbol	R/W	R/W	Bits	Default	Description	
0x10	IA_FAST_RMS_C	R/W	R	16	0xFFFF	Fast current RMS control	
OATO	TRL	17/ 17	1	10	OXITIT	register	

Set the refresh time to half-cycle or cycle by IA_FAST_RMS_CTRL, and set the fast RMS threshold (Leakage or over-current threshold).

0x10	MODE	Fast RMS register					
No.	name	default value description					
	FAST RMS CTRL		[15]Fast RMS refresh time	0: half-cycle			
0x10	PAST_RWIS_CTRL	0xFFFF	[13]rast KWS refresh time	1: cycle			
			[14:0]Fast RMS threshold				

Set AC frequency by MODE[9].

0x18	MODE	User mode selection register				
No.	name	default value description				
0	AC_FREQ_SEL	0b0	AC frequency	0: 50Hz		
9	AC_FREQ_SEL	ODO	selection	1: 60Hz		

Refresh the 24-bit unsigned RMS register according to one cycle or half cycle, Bit[23:9] of the FAST_RMS register compare with the leakage/over-current threshold FAST_RMS_CTRL [14:0], if the value is greater than or equal to the set threshold, then leakage/over-current alarm output pin will be highlevel.

Address	Symbol	External	Internal	Bits	Default	Description
Audiess	Symbol	R/W	R/W	Dits	Delault	Description
0x00	IA FAST RMS	R	W	24	0x000000	Fast current RMS,
OAOO	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IX.	, ,,	∠-T	0A000000	unsigned

Leakage/over-current alarm output indicator pin is CF, set MODE[12]=1 and TPS_CTRL[14]=1 before use it.

0x18	MODE	User mode selection register					
No.	name	default value description					
12	CF_UNABLE	0b0	CF output function selection	0: energy pulse, enable by MODE[11] configured			

	1: Temperature measurement/Leakage
	alarm,
	enable by TPS[14] configured

0x1B	TPS_CTRL		Temperature 1	mode control register
No.	name	default value		description
			Alarm	0: Temperature alarm on
14	ALERT_CTRL	0b0	selection	1: Leakage/over-current alarm on

Since the fast effective values are updated by cycle or half-cycle, the interrupt response time is up to 2 cycles or 2 half-cycles.

Phase Angle Calculation

CYP1840 has phase angle measurement function. The reactive quadrant can be indicated by the angle of current and voltage respectively by calculating the positive zero-crossing time difference between current and voltage. It is updated to the register CORNER_A when the current is positive zero crossing. The register is a 16-bit unsigned number.

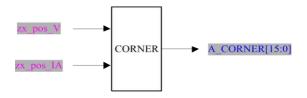


Figure 9

Address	Symbol	External R/W	Internal R/W	Bits	Default	Description
0x0C	A_CORNER	R	W	16	0x0000	Current voltage waveform phase angle register

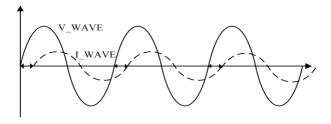


Figure 10

Phase Angle conversion formula: 2*pi*A_CORNER*fc

The unit is radian

Among them, f_c is the frequency of the AC signal source, the default value is 50Hz. f_0 is the sampling frequency; the typical value is 1MHz.

Zero Crossing Detection

CYP1840 has the voltage zero-crossing detection function, and the zero-crossing signal is directly output by pin ZX. When ZX=0, it indicates the positive half cycle of the waveform, and when ZX=1, it indicates the negative half cycle of the waveform. The delay between the zero-crossing signal and the actual input signal is about 570us.

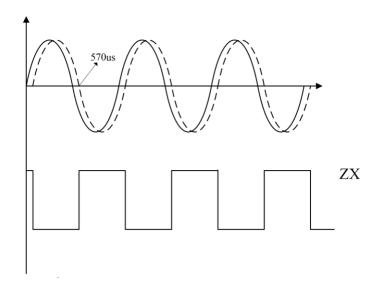


Figure 11

Temperature Measurement

CYP1840 supports internal temperature measurement and external temperature measurement.

External temperature measurement, optional output alarm indicator, Turn on the alarm function, CF pin selection output alarm signal, the CF pin will output high-level if the TPS2 is greater than or equal to the alarm threshold, Temperature indicator alarm. When the temperature value is lower than the alarm value or the alarm function is turned off, Exit alarm indicator.

0x1B	TPS_CTRL		Temperature mode control reg	ister
No.	name	default value	description	on
			[15] Temperature measurement switch, default 0b0,Open the temperature measurement	0: on 1: off
			[14] Alarm selection, default0b0,	O: Temperature alarm on 1: Leakage/over-current alarm on
0x1B	TPS_CTRL	0x07FF	[13:12]Temperature measurement selection, default 0b00 Automatic temperature measurement	00: Automatic temperature measurement 01: the same as 00 10: internal temperature measurement 11: external temperature measurement
			[11:10]Temperature measurement	00: 50ms

CY1840

interval selection, default 0b01	01: 100ms
100ms	10: 200ms
	11: 400ms
[9:0]External temperature alarm	
Threshold, default 0x3FF	

First set MODE[12]=1, and then set TPS_CTRL[14]=0, then CF pin is turned on to output external temperature alarm indicator.

0x18	MODE		User mode selection i	register
No.	name	default value	de	escription
			M	energy pulse, enable by ODE[11] configured
12	CF_UNABLE	0b0	functionselection ala	Temperature measurement arm, enable by TPS[14] onfigured

The external and internal temperature values are saved in the TPS2 and TPS1 registers respectively.

A ddmaga	Cross b ol	External	Internal	D:4a	Dofoult	Dogovintion
Address	Symbol	R/W	R/W	Bits	Default	Description
0x0E	TPS1	R	W	10	0x0000	Internal temperature register, unsigned
0x0F	TPS2	R	W	10	0x0000	External temperature register, unsigned

Internal temperature measurement formula: Tx=(170/448)(TB/2-32)-45TB

is the value in TPS1

The external temperature is measured by SAR ADC. The maximum input signal of the VT pin is0.55*VDD (V), The TPS2 register value is the corresponding AD sampling value, full scale is 1024.

Address	Symbol	External	Internal	Bits	Default	Description
		R/W	R/W	Dits	Delauit	Description
0x1C	TPS2_A	R/W	R	8	0x00	External temperature sensor gain coefficient correction A register
0x1D	TPS2_B	R/W	R	8	0x00	External temperature sensor offset coefficient correction B register

Communication Interface

Register data are sent as 3 bytes (24bit). The data is fixed 3 bytes, if valid data bytes are less than 3 bytes,invalid bits are filled with 0.

SPI

- Select by pin UART_SELL, multiplex with UART
- Slave mode
- Half-duplex communication, the communication rate can be configured, the maximum communication rate is 900khz
- 8-bit data transmission, MSB first, LSB last
- Clock polarity / phase (CPOL = 0, CPHA = 1)

Operation Mode

The master device works in Model: CPOL=0, CPHA=1, In idle state, SCLK is at low-level. Data is transmitted on the first edge, which is the transition from low level to high level of SCLK, so data is received on the falling edge and data is sent on the rising edge.

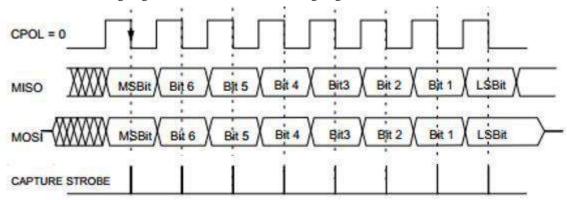


Figure 12

Frame Structure

In SPI communication mode, MCU send 8-bit identification byte (0x58) or (0xA8). (0x58) is the read operation identification byte and (0xA8) is the write operation identification byte. Then send the address byte of the register will be accessed (refer to CYP1840 register list). The below figure shows the data transfer sequence for read and write operations respectively. After one frame of data is transmitted, CYP1840 re-enters the communication mode. The number of SCLK pulses required for each reading and writing operation is 48 bits.

There are two types of frame structures, which are explained as follows: 1)

Write operation frame

Write operation frame	0xA8	ADDR[7:0]	DATA_H[7:0]	DATA_M[7:0]	DATA_L[7:0]	CHECKSUM[7:0]
-----------------------	------	-----------	-------------	-------------	-------------	---------------

The checksum byte is $(0xA8 + ADDR + DATA_H + DATA_M + DATA_L) \& 0xFF)$ and then bitwise inverted.

2) Read operation frame

The checksum byte is $(0x58 + ADDR + DATA_H + DATA_M + DATA_L) & 0xFF)$ and then bitwise inverted.

Write Operation Timing

The serial write timing is performed as follows. The frame identification byte $\{0xA8\}$ indicates that the data communication operation is data writing. The MCU need make the data ready before the lower edge of SCLK, and shift the data at the lower edge of this clock. All remaining bits of the data are also shifted left on the lower edge of this SCLK (Figure 13) $_{\circ}$

Figure 13

Read Operation Timing

During the data read operation, CYP1840 shifts the corresponding data to the DOUT pin on the rising edge of SCLK. DOUT keeps unchanged during SCLK =1.MCU can sample DOUT value before the next falling edge. MCU must send a read command frame first before read operation.

Figure 14

When CYP1840 is in communication mode, the frame identification byte {0x58} indicates that the data communication operation is data reading. After receiving the register address, CYP1840 starts to shift out the data in the register on the rising edge of SCLK (Figure 14). All remaining bits of the register data are shifted out on subsequent rising SCLK edges. Therefore, on the falling edge of SCLK, an external device can sample the output data of the SPI. Once the read operation is completed, SPI re-enters the communication mode. SDO enters a high-impedance state on the falling edge of the last SCLK signal.

Fault-tolerant mechanism of SPI interface

SPI supports soft reset function, reset SPI interface individually by sending 6bytes of 0xFF.

UART Communication methods

Summarize

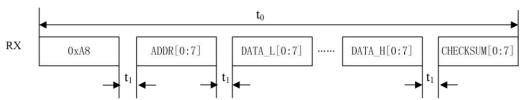
CYP1840 supports UART communication. The UART interface only requires two low speed optocouplers to achieve isolated communication.

Baud rate: 4800bps Check bits: None Data bits: 8 Stop bits: 1.5 Slave mode, half-duplex communication

Description

UART port Settings: Communication baud rate is 4800bps, no parity, stop bit 1.5.

Byte Formation

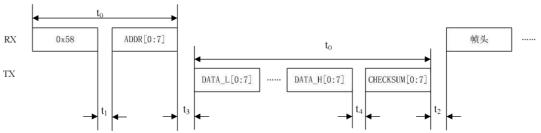

Start bit low duration: t1=208us;

Valid data bit duration: t2=208*8=1664usStop

bit high duration: t3=208us+104us

Write Timing

The data write sequence of the host UART is shown in the figure below. The host sends command bytes (0xA8) first, then write address bytes (ADDR), then sends data bytes in sequence, and finally checksum bytes.



(0xA8) is the frame identification byte for the write operation. ADDR is the internal target register in CYP1840 corresponding to the write operation.

The checksum byte is ((0xA8+ADDR+Data_L+Data_M+Data_H) & 0xFF) and then bitwise inverted.

Read Timing

The timing of reading data is shown below. MCU first sends the command byte (0x58) and the address of the target register (ADDR), and then CYP1840 sends data bytes in sequence. Finally sends the checksum byte.

(0x58) is the frame identification byte for the read operation. ADDR is the internal target register in CYP1840 corresponding to the read operation.

The checksum byte is ((0x58+ADDR+Data_L+Data_M+Data_H) & 0xFF) and then bitwise inverted.

Timing Description:

	Description	Min	Type	Max	Unit
t1	Interval between MCU sending bytes	0		20	mS
	Frame interval	0.5		-	uS
t3	Interval between the end of MCU sending register address and CYP1840		72		uS
	sending byte during read operation				
t4	Interval between CYP1840 sending bytes		116		uS

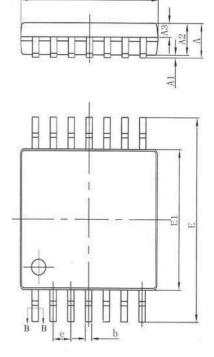
Packet sending mode

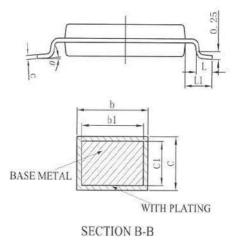
After received the command "(0x58) + 0xAA", CYP1840 will return a full electrical parameter data packet. The returned data packet has a total of 35 bytes, and 4800bps takes 77ms. The specific format is: Frame head (1byte head) \rightarrow Current A fast effective value (3byte IA_FAST_RMS) \rightarrow Current A effective value (3byte IA_RMS) \rightarrow reserved (3byte) \rightarrow Effective voltage (3byte V_RMS) \rightarrow reserved (3byte) \rightarrow Channel A power value (3byte A_WATT) \rightarrow reserved (3byte) \rightarrow Channel A pulse meter value (3byte CFA_CNT) \rightarrow reserved (3byte) \rightarrow Internal thermometer value (2byte TPS1 + 1byte 0) \rightarrow External thermometer value (2byte TPS2 + 1byte 0) \rightarrow Checksum value (1byte CHECKSUM).

Full electrical parameter data packet format:

Name	No.	Value	Name	No.	Value
Frame head	0	Head (0x55)		19	reserved
	1	IA_FAST_RMS_1	reserved	20	reserved
IA_FAST_RMS	2	IA_FAST_RMS_m		21	reserved
	3	IA_FAST_RMS_h		22	CFA_CNT_1
	4	IA_RMS_1	CFA_CNT	23	CFA_CNT_m
IA_RMS	5	IA_RMS_m		24	CFA_CNT_h
	6	IA_RMS_h	reserved	25	reserved
	7	reserved		26	reserved
reserved	8	reserved		27	reserved
	9	reserved		28	TPS1_1
	10	V_RMS_1	TPS1	29	TPS1_m
V_RMS	11	V_RMS_m		30	0x00
	12	V_RMS_h		31	TPS2_1
	13	reserved	TPS2	32	TPS2_m
reserved	14	reserved		33	0x00
	15	reserved	checksum	34	checksum
	16	A_WATT_1			
A_WATT	17	A_WATT_m			
	18	A_WATT_h			

 $checksum = ((0x58 + 0x55 + data1_l + data1_m + data1_h +) \& 0xff) \ and then \ bitwise \ inverted.$


Protection mechanism of UART interface


UART communication has a timeout protection mechanism. If the interval between bytes exceeds 18.5 ms, the UART interface will automatically reset.

If the frame identification byte is incorrect or the checksum byte is incorrect, the frame data will bediscarded.

UART module reset: The RX pin is pulled high after the low-level exceeds 6.65mS, and the UARTmodule will be reset.

Package Information (TSSOP14)

SYMBOL	MILLIMETER						
5 I MDOL	MIN	NOM	MAX				
A	-		1.20				
A1	0.05	_	0.15				
A2	0.90	1.00	1.05				
A3	0.39	0.44	0.49				
b	0.20	_	0.28				
b1	0.19	0.22	0.25				
c	0.13		0.17				
cl	0.12	0.13	0.14				
D	4.90	5.00	5.10				
EI	4.30	4.40	4.50				
Е	6.20	6.40	6.60				
e	0.65BSC						
L	0.45	0.60	0.75				
LI	1.00BSC						
0	0	_	80				

Special Instructions

The company reserves the right of final interpretation of this specification.

Version Change Description

Version: V1.03 Author: Lifeng Liu Time: 2021.9.09

Modify the record:

1. Re-typesetting the manual and checking some data

Statement

The information in the usage specification is correct at the time of publication, CY Wireless Technology Limited has the right to change and interpret the specification, and reserves the right to modify the product without prior notice. Users can obtain the latest version information from our official website or other effective channels before confirmation, and verify whether the relevant information is complete and up to date.

With any semiconductor product, there is a certain possibility of failure or failure under certain conditions. The buyer is responsible for complying with safety standards and taking safety measures when using the product for system design and complete machine manufacturing. The product is not authorized to be used as a critical component in life-saving or life-sustaining products or systems, in order to avoid potential failure risks that may cause personal injury or property loss.